

High Resolution Electronic Measurements in Nano-Bio Science

Nanoscale Electrochemistry Shrinking the active volume

Giorgio Ferrari

Milano, June 2025

Outline

- Shrinking electrode size:
 - Steady state voltammetry
 - Ultra-fast voltammetry
- Single molecule detection
 - Redox cycling
 - Nanosensors
- Nanosensors and fM detection: a comment

Shrinking the electrode: what happens?

- Resistance of solution?
- Double-layer?
- Butler-Volmer current? -

depends by the smallest electrode $R_{sol} = \frac{\rho}{2d}$ (disk electrode, see lesson on liquids) They are surface phenomena \rightarrow prop. to the electrode area

(> few nm)

Diffusion (mass transfer)?

Diffusion

Potential-step experiment: $O + e \subseteq R$

 $\rightarrow I_{diff}$ reaches a steady state

Diffusion

Potential-step experiment: $O + e \subseteq R$

Steady state reached for L_{diff} few times r

2r = 1mm $\rightarrow t_{ss} \approx 14h$ no steady-state(D= 10^{-5} cm^{2}/s)for macroelectrodes!

 $2r = 100nm \rightarrow t_{ss} \approx 500 \mu s$ feasible (*ultramicroelectrode*)

Diffusion

Potential-step experiment: $O + e \subseteq R$

POLITECNICO MILANO 1863

Amperometry using micro/nanoelectrodes

Steady-state Butler-Volmer

Simple heterogenous electron-transfer reaction: $O + e \leftrightarrows R$

$$i = FAk^{0} \Big[C_{R}^{e} e^{(1-\alpha)\eta/V_{th}} - C_{O}^{e} e^{-\alpha\eta/V_{th}} \Big] \qquad \qquad \eta = V - V_{0}$$
(overpotential)

Steady-state:
$$\frac{i}{F} = \text{flux } O = \text{flux } R$$

$$i = \frac{C_R^b e^{(1-\alpha)\eta/V_{th}} - C_0^b e^{-\alpha\eta/V_{th}}}{e^{-\alpha\eta/V_{th}} + e^{(1-\alpha)\eta/V_{th}} + \frac{Db}{Ak^0}} \cdot FDb$$

Steady-state Butler-Volmer For pure oxidation: $R \rightarrow O + e$ (bulk $C_0=0$) i_{diff,lim} i = $I_{diff,lim} = FDC_h b$ $\overline{1 + e^{-\eta/V_{th}} + \left(\frac{Db}{Ak^0}\right)} e^{-(1-\alpha)\eta/V_{th}}$ 50p $D=10^{-5} cm^{2}/s$ Amperometry i_{diff,lim} C=1mM 10 cm/s \circ I_{diff_lim}, b \rightarrow C_b 40p r=100nm Current [A] 100 cm/s 30p 1cm/s **Steady-state** k⁰=0.1cm/s voltammetry 20p \circ I_{diff.lim}, C_b \rightarrow b 10p \circ Shape of I vs η → k⁰

POLITECNICO MILANO 1863

0

η [V]

250m

0└── -250m

G. Ferrari - Nanoscale Electrochemistry

500m

Steady-state voltammetry: electronics Steady state measurement!

 $BW \approx 40 \cdot v = 0.2 Hz$

low scan rate: v = 5mV/s

 $C_{f}=10pF$ $R_f = 10G\Omega$ no advanced circuits ! (+potentiostatic loop to set the Electrode reference voltage) V_{out} 100nm disk: Cp $i_{i} \approx 20 n A \cdot C_{bulk}[M]$ I_S $C_{bulk} > \approx 1 \mu M$ FET (AD549) $=\frac{4kT}{10G\Omega}+\overline{i_n^2}+\overline{e_n^2}\omega^2 C_p^2$ $i_{rms} \cong 1 fA$ S_{i,eq} for $C_p < 100 pF$

Outline

- Shrinking electrode size:
 - Steady state voltammetry
 - Ultra-fast voltammetry
- Single molecule detection
 - Redox cycling
 - Nanosensors
- Nanosensors and fM detection: a comment

Response time

disk electrode (diameter d)

d > double-layer thickness δ_{dl}

Probing faster interface phenomena

Example: d=1mm $\rightarrow \tau = 25\mu s$ (PBS solution) d=50nm $\rightarrow \tau = 1.2ns$

- kinetic analysis, reversibility, multielectron transfer
- "chemical fingerprint of the reaction"

Fast cyclic voltammetry

-1.0

-0.8

depletion layer < radius to avoid steady-state

$$L_{diff} \approx \sqrt{2Dt} \ll r$$

$$t \approx \frac{kT/q}{v}$$

$$v \gg \frac{2DkT}{qr^2}$$
Fast scan
rate
$$t \approx \frac{kT/q}{v}$$
100 nm $\rightarrow v \gg 5$ kV/s

-0.6

-0.4

-0.4

-0.6

-0.8

-1.0

Fast cyclic voltammetry... not too fast!

Negligible ohmic drop in the bulk solution requires:

$$I_{peak} \cdot R_{sol} < kT/q$$
 $I_{peak}R_{sol} \propto \sqrt{\nu}$ Limited maximum scan rate

Very fast scan rate requires:

High ion concentration $(R_{sol}\downarrow)$

Demonstrated up to MV/s!

C. Amatore et al. / C. R. Chimie 6 (2003) 99–115

- potentiostat with real-time compensation of the ohmic drop

Real-time compensation of the ohmic drop

Ultrafast CV: compensation of R_{sol}

Ultrafast Cyclic Voltammetry

Outline

- Shrinking electrode size:
 - Steady state voltammetry
 - Ultra-fast voltammetry
- Single molecule detection
 - Redox cycling
 - Nanosensors
- Nanosensors and fM detection: a comment

Single molecule detection

Electroactive molecule:

Few electrons (1-2) from a single molecule

No single molecule detection using a simple redox process!

State of art current readout:

- 1 fA_{rms}, BW=1Hz \rightarrow >6000 electrons!
- 1 pA_{rms}, BW=100kHz \rightarrow >60 electrons!

 $(C_{in}=1pF)$

Redox cycling in a nanofluidic channel

transit time (up \rightarrow down) diffusion controlled:

$$t_D \cong \frac{d^2}{2D}$$

each molecule gives an average current of:

$$i_{mol} \cong \frac{q}{2t_D} = \frac{qD}{d^2}$$

Amplification of the current from a single molecule!

total diffusion-limited current:

$$i_{lim} \cong \frac{qD}{d^2} N_{mol}$$

M. A. G. Zevenbergen, JACS. 2009, 131, 11471

POLITECNICO MILANO 1863

Redox cycling in a nanofluidic channel

Two electrode thin layer cells

Cr sacrificial layer, thickness ~ 50nm

M. A. G. Zevenbergen, B. L. Wolfrum, E. D. Goluch, P. S. Singh, and S. G. Lemay, Fast Electron-Transfer Kinetics Probed in Nanofluidic Channels, J. AM. CHEM. SOC. 2009, 131, 11471

POLITECNICO MILANO 1863

Stochastic sensing of single molecules

POLITECNICO MILANO 1863

Redox cycling pushed to its limits

POLITECNICO MILANO 1863

A. De, S. Chen, and E. T. Carlen, "Probe-free semiconducting silicon nanowire platforms for biosensing," in *Semiconducting Silicon Nanowires for Biomedical Applications*, Elsevier, 2014, pp. 229–265.

M. Y. Shen, B. R. Li, and Y. K. Li, "Silicon nanowire field-effect-transistor based biosensors: From sensitive to ultra-sensitive," *Biosens. Bioelectron.*, vol. 60, pp. 101–111, 2014, doi: 10.1016/j.bios.2014.03.057.

Nanowire sensor

Surface functionalization is fundamental!

- Binding of the target
- Selectivity

A. Zhang, J. H. Lee, and C. M. Lieber, "Nanowire-enabled bioelectronics," *Nano Today*, vol. 38, p. 101135, 2021

Nanowire sensor – electrolyte

ut PEG 100 mM Buffer 10 without PEG polymer Signal amplitude (mV) -10 +PSA -20 -30 -40 with PEG polymer vice #1 -50 +buffer evice #2 device #3 -60 500 1000 1500 2000 2500 0 Time (s) with PEG PEG A. Zhang, bioelecti POLITEC

Low ion concentration or biomolecule permeable polyethylene glycol (PEG) polymer

Pay attention to the electrolyte screening: fewer ions around the probe-target → less electrostatic shielding $C_{+}(x)$ charge Excess diffuse layer ϵkT PBS: L_D ≈ 1nm ! L_D $2z^2q^2C_0$

Single protein detection

- Silicon nanowire 20-40nm diameter
- Protein ≈ 10nm (negatively charged)
- Concentration ≈ 2nM
- Sub-threshold operation of SiNW

J. Li et al, Nanoscale, 16172 (2016)

Single aptamer-ligand binding detection

Y. Lee et al, Nature Nanotech., 660 (2024)

POLITECNICO MILANO 1863

50

N

Single aptamer-ligand binding detection

Outline

- Shrinking electrode size:
 - Steady state voltammetry
 - Ultra-fast voltammetry
- Single molecule detection
 - Redox cycling
 - Nanosensors
- Nanosensors and fM detection: a comment

Single molecule detection

Single-molecule detection can be obtained by operating at high concentrations. For example, by isolating the molecule in a very small volume $\sum_{n=1}^{\infty} \frac{|-1|^{20} \text{ nm}^{-1}|}{n}$

zeptoLiter (100nm³): 1 molecule means concentration of mM!

 \rightarrow single molecule \neq low concentration beneficial for a reduction of spurious reaction

Biosensor: detection at low concentration!

A sensor able to detect a single molecule is not enough!

- Selectivity: chemistry is fundamental
- Response time

1 fM detection

Nanoscaled sensor:

- + sensitivity
- time to capture molecules

fM detection: check the time!

1fM (D=1.5 10⁻⁶ cm²/s)

(1 molecule in a volume of $120\mu m \times 120 \mu m \times 120 \mu m$)

Hemispheric electrode

Hemicylindric electrode (10µm long)

Whitman, Detection limits for nanoscale biosensors, Nano Lett., 5, p. 804 (2005) Nair and Alam, Performance limits of nanobiosensors, *Appl. Phys. Lett.*, p. 233120, (2006)

POLITECNICO MILANO 1863

Reduce the response time - 1 Ex. 1: increase concentration with evaporation!

60 aM DNA in <20 min (DI water)

A. Ebrahimi *et al.*, "Nanotextured superhydrophobic electrodes enable detection of attomolar-scale DNA concentration within a droplet by non-faradaic impedance spectroscopy," *Lab Chip*, pp. 4248–4256, 2013

POLITECNICO MILANO 1863

Reduce the response time - 2 Ex. 2 -a: increase the surface of the sensor keeping sensitivity to few molecules

(Very) large array of nanosensors

It is still a complex approach

CMOS chip (+ e-beam, +dielectrophoretic trapping of the wire) with 16k sensors, 1kHz frame rate

D. Hall *et al.*, "A Scalable CMOS Molecular Electronics Chip for Single-Molecule Biosensing," TBCAS, 2022; K.S. Shepard *et al.*, *Nano Letters* 2016; S.G. Lemay *et al.*, *Anal. Chemistry* 2021

Reduce the response time - 2 Ex. 2 - b: increase the surface of the sensor keeping sensitivity to few molecules

Large (mm!!!) electrolyte-gated FET

E. Macchia *et al.*, "Single-molecule detection with a millimetre-sized transistor," *Nature Comm.* 2018; L. Torsi *et al.* "Large-Area Interfaces for Single-Molecule Label-free Bioelectronic", *Chem. Rev.* 2022

Reduce the response time - 3 Ex. 3: magnetic nanoparticles

Waiting for the molecules...

...hunting the molecules!

- 1. Target capture with functionalized magnetic nanoparticles (high concentration)
- 2. Collection using a magnetic field: concentration and separation

P. R. Nair and M. A. Alam, "Theoretical detection limits of magnetic biobarcode sensors and the phase space of nanobiosensing.," *Analyst*, vol. 135, pp. 2798–801, 2010

Reduce the response time - 3 Ex. 3: magnetic nanoparticles

R. Tavallaie *et al.*, "Nucleic acid hybridization on an electrically reconfinitro microRNA detection in blood," *Nat. Nanotechnol.*, pp. 1066–1071, 201
L. Gloag, M. Mehdipour, D. Chen, R. D. Tilley, and J. J. Gooding Sensing," *Adv. Mater.*, vol. 31, no. 48, pp. 1–26, 2019

POLITECNICO MILANO 1863

G. Ferrari

-160

Evs Ag|AgCl (3 M) (mV)

-360

Summary

- nanoelectrodes:
 - enhanced mass-transfer
 - → steady-state voltammetry (nanoelectrodes)
 - fast response-time (double-layer charging)
 - \rightarrow ultra-fast voltammetry (nano/microeletrodes)
- single molecule detection is feasible:
 - redox cycling (thin layer cells)
 - nanoscaled transducer: volume or surface of the sensor comparable to the molecule size
- fM concentration: time required by mass- transport could be a strong limitation